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LETI'ER TO THE EDITOR 

Interpretation of symmetry transformations 

Sergio Hojmant 
Departamento de Fisica, Universidad de Santiago de Chile, Casilla 5659, Correo 2, 
Santiago, Chile 

Received 21 March 1984 

Abstract. A general interpretation of symmetry transformations for an arbitrary regular 
multidimensional differential system is given in terms of its constants of motion. The 
results include those of recent works in the literature as special cases and a query posed 
in one of them is solved. 

Recently, several authors (Schwarz 1983, Sarlet 1983, Martini and Kersten 1983, 
Hojman 1984) have studied symmetries of mechanical systems. This work may be 
considered as an extension of the research of Schwarz and Martini and Kersten who 
treated one-dimensional linear. systems only. The purpose of this letter is to provide 
an answer to the query posed by Schwarz (1983) at the end of his letter and to present 
a general approach to symmetry transformations of multidimensional regular arbitrary 
differential systems. The results allow a clear interpretation of the meaning of general 
symmetry transformations and contain, as a special case, the findings of the aforemen- 
tioned authors who dealt with the one-dimensional linear case. These results further 
reveal that, locally and using appropriate coordinates, the algebraic structure of 
symmetry transformations depends only on the dimension of the problem at hand. All 
considerations of this letter are local in nature. 

Consider the system 

qi-Fi(@, $, t)=O, i , j =  1 ,..., n. (1) 

q" = qi +&Ti(@, cy, t) +0(&2). (2) 
It is said that transformation (2) is a symmetry transformation of system ( I )  if it 

Define the infinitesimal transformation 

maps the space of solutions of (1) into itself, i.e., if v i  satisfies 

to within terms of order E * ,  where 

Tildt = Fia/agi +gia/aqi +a /a t  (4) 
(see, for instance, Santilli 1978, Hojman 1984). Transformation (2) can be generalised 
to include a transformed time variable but there is really no advantage in doing that 

t On sabbatical leave from Centro de Estudios Nucleares, Univenidad Nacional Autdnoma de MCxico, 
Circuit0 Exterior, CU 04510 MCxico, DF. 

0305-4470/84/ lOO521+05$02.25 @ 1984 The Institute of Physics L521 



L522 Letter to the Editor 

as is shown below (see also Hojman 1984). The variable v i  corresponds to W in the 
one-dimensional example studied by Schwarz. 

It turns out that it is more convenient to study first-order systems equivalent to (1) 
and (2), instead of systems (1) and (2) themselves. 

To this end’define x P  and f ” ( x ” ) ( p ,  v = 0, 1, . . . ,2n)  by 

xo=  t, xi = 4 i  9 Xi+” = 4 ’ 9  ( 5 )  

(6)  p= 1, fi E Xi+n, 

dx”/d t -  f ” ( x ’ ) = O  (7) 

f”” G F’(x‘ ,  x‘+*, t ) .  

The system 

is equivalent to (1). Note that the first equation, labelled by p = 0, is an identity (see 
Hojman and Urrutia 1981). 

The infinitesimal transformation 

x’” = x” +&(” (X” )  +O(&2) (8) 

which does include the transformation of time t = x 0 ,  is said to be a symmetry 
transformation of system (7) if it maps the space of solutions of (7) into itself, i.e., if 

@ d t =  f p a / a x P  =f”a/ax‘  +alar ,  (10) 

A,’ = a A / a x ”  (11 )  

a = 1,2, . . . ,2n  

(which coincides with definition (4)), and 

(see Hojman and Zertuche 1984). 
Note that due to the fact that time is transformed, the time derivative appearing 

in (7) has to be properly handled to get equations (9). It is straightforward to realise 
that the p = 0 component of equations (9) is an identity. 

Therefore, equations (9) have only 2n independent components, i.e., only 2n of 
the 2n + 1 unknowns 5” can be determined, which in turn means that one of them, to 
say, is arbitrary. 

Furthermore, due to the same fact 

6” = A(x”)f” (12) 
solves equations (9) for arbitrary A. 

Hence, given any solution 5” to equation (9) one can always define a new solution 
P 

T “ = s ’ - [ O f P  

f 0  = 0. 

taking A = to (due to the linear character of (9)) such that 

This fact justifies the possibility of considering transformations like (2) where time 
is not transformed. Equation (13) links transformations where time is transformed with 
those where time is left unaltered. From now on I will consider transformations of 
type (1  3) with so = 0 and will drop the overbar for convenience. 
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It can be readily seen that equations (9) (with s" = 0) are equivalent to equations 
(2) with the identification 

5' = 71, ti'" dTi /d t  

(see Hojman 1984). 
Consider the 2n functionally independent variables C" 

C" = C"(X"), a = 1, . . . ,2n, 

such that 

det(dC"/8xb) # 0, a, b =  1 , .  . , , 2 n ;  

equation (17) means that the change of variables 

C" = C"(X'), 

x' = X"(C") 

cos xo= t, 

is well defined and its inverse 

exists, because 

det(aCa/axp) = det(aC"/axb) # 0 

(see Hojman and Urrutia 1981). 
The variables C" can always be chosen (in infinitely many ways) such that 

dC"/dt  = 0, a = 1, . . . ,2n, (21) 
at least locally (Pontryagin 1962), i.e., so that C" are the 2n functionally independent 
constants of motion of problem (7) (or (1)). System (7) can be written in terms of the 
coordinates C" as 

dC"/dt-g"(C')=O, a , p = O , I  ,..., 2n, (22) 

go= 1, g" =o, a = 1, . . . ,2n, (23) 

g" = (ac"/ax')j-' (24) 

where 

and 

because of equations (21) and definition (1 8) (see Hojman and Urrutia 198 1). Equation 
(22) is equivalent to equation (7) because of (20) and (24). 

Consider an infinitesimal transformation 

C'" = C" +Ey"(C')+O(&i) (25 )  
with CO kept fixed (because of the argument below equation (14)). 

for equation (22), is 
The equation y" has to satisfy, in order that (25) be a symmetry transformation 

d y"/dt = 0, (26) 
which is equivalent to equation (9) taking 

5" = (ax'/aca) y" 

f' = (aX"/ac")g". 

( y o  = 0, i.e., 5' = o), 
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The most general solution to equation (26) is 

y” = y ” ( C b )  

where y” are arbitrary functions, i.e., the symmetry transformation maps constants of 
motion into constants of motion of the problem in question. 

Therefore, the most general solution of equation (9) can be written as 

6’ = (ax’ /aC”)y”(Cb)  + 6 O ( X ” ) f ” )  (30) 
where y” are arbitrary functions of the constants of motion and ,$‘ is an arbitrary 
function of the variables xu. Without losing generality one may choose lo = 0. In other 
words, the symmetry transformations may be understood as the image, in coordinate 
space, of the mapping of the space of constants of motion of the problem into itself. 
This is a unified way of understanding symmetry transformations for arbitrary multi- 
dimensional problems. Of course, the algebraic structure of the generators of symmetry 
transformations, when written in terms of the constants of motion, is universal depend- 
ing only on the dimensionality of the problem, in the same sense that equations (21), 
(22), (23) and (26) are independent of the problem at hand. The structure of the 
problem is contained in the transformation laws (18), (19), (24), (27) and (28). 

It is worth mentioning that the information needed for the different approaches is 
the same. In fact, the knowledge of two functionally independent constants of motion 
is necessary for the method devised by Schwarz (1983) in order to find the symmetries 
of the one-dimensional harmonic oscillator, while Martini and Kersten (1983) need 
two independent solutions of one second-order linear equation. In both cases the 
information is equivalent to the one needed to find the general solution of the 
one-dimensional problem under consideration. The information which is necessary 
for the method developed in this note, i.e., the knowledge of 2n functionally indepen- 
dent constants of motion of equation (1) (or (7)) also amounts to knowing the general 
solution of the n-dimensional problem. 

Consider the one-dimensional harmonic oscillator 

q + q = o  (31) 

q = C ,  sin(t + C2), (32) 
q = c, cos(t + C2). (33) 

CI = ( q 2  + Cj*)1’2, (34) 

(35) C2 = tan-’ q / q  - t. 

with general solution 

The constants of motion CI and C2 may be written in terms of q, 4 and t 

The most general symmetry transformation is given by equation (30) (for p = 1, 
recall equation (1  5 ) )  

77 =(aq/aCa)Y”(Cb) +to(% 4, 94, a, b =  1,2, (36) 

7 = sin(t + c2)y’(cb) + C ,  cos(t + c,) +etj 

77 = 4Y’(Cb)/CI +4r2(Cb)+P4 (38) 

i.e., 

(37) 
or 
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which exactly coincides with the result of Schwarz (1983) (when the appropriate choice 
for to is made, as in his equation (3)). 

The functions y '  and y2 have an arbitrary dependence on the constants C ,  and C2. 
Similarly, it is possible to recover the results of Martini and Kersten (1983). 
In summary, I have showed that for a regular multidimensional arbitrary differential 

system an infinite-dimensional Lie group of symmetry transformations exists, which 
has a universal algebraic structure (depending on its dimensionality only) in terms of 
the constants of motion of the problem under consideration. 

The symmetry transformations may be understood as the image of coordinate space 
of a mapping of the space of constants of motion of the problem into itself. This 
interpretation provides one clear and general answer to the query posed by Schwarz 
(1983). 

The author gratefully acknowledges the support of Departamento de Investigaciones 
Cientificas y Tecnol6gicas, Universidad de Santiago de Chile. 
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